Adding Mathematical Functions to Expressions

You can incorporate mathematical functions into parameters. For example, you might negate an expression in order to invert a tracking curve which you wish to use to stabilize an element (such an expression might resemble the following: -

(Transform1.translate.x).

You can also rely on a function to add more complex mathematical operation to your expressions. The table below list all the functions which you may incorporate into Nuke expressions

Function	Purpose	Operator Usage	Related Functions
abs (x)	Returns the absolute value of the floating-point number x.		See also: fabs.
$\operatorname{acos}(\mathrm{x})$	Calculates the arc sine of x; that is the value whose sine is x .	If x is less than -1 or greater 1, asin returns nan (not a number).	See also: cos, cosh, asin, atan.
asin (x)	Calculates the arc sine of x; that is the value whose sine is x .	If x is less than -1 or greater 1, asin returns nan (not a number)>	See also: sin, sinh, acos atan.
$\operatorname{atan}(\mathrm{x})$	Calculates the arc tangent of x ; that is the value whose tangent is x. The return value will be between -PI/2 and PI/2.	x	See also: tan, tanh, acos, asin, atan2.
$\operatorname{atan} 2(x, y)$	Calculates the arc tangent of the two variables x and y. This function is useful to calculate the angle between to vectors.	x, y	See also: sin, cos, tan, asin, acos, atan, hypot.
ceil (x)	Round x up to the nearest integer.	x	See also: floor, trunc, rint.
clamp (x , min, max)	Return x clamped to [min ... max]	x, \min , \max	See also: min, max.
clamp (x)	$\begin{aligned} & \text { Return x clamped to }[0.0 \ldots \\ & 1.0] \end{aligned}$	x	See also: min, max.
$\cos (\mathrm{x})$	Returns the cosine of x	x in radians	See also: acos, sin, tan, cosh.
$\cosh (\mathrm{x})$	Returns the hyperbolic cosine of x, which is defined mathematically as $(\exp (x)+$ $\exp (-x)) / 2$.	X	See also: cos, acos, sinh, tanh.

curve (frame)	Returns the y value of the animation curve at the given frame	optional: frame, defaults to current frame	See also: value, y.
degrees (x)	Convert the angle x from radians into degrees	X	See also: radians.
$\exp (\mathrm{x})$	Returns the value of e (the base of natural logarithms) raised to the power of x.	x	See also: log, log10.
exponent (x)	Exponent of x.	x	See also: mantissa, Idexp.
fBm (x, y, z, octaves, lucanarity, gain)	Fractional Brownian Motion. This is the sum of octaves calls to noise(). For each of them the input point is multiplied by pow(lacunarity,i) and the result is multiplied by pow(gain,i). For normal use, lacunarity should be greater than 1 and gain should be less than 1.	x, y, z, octaves, lacunarity, gain	See also: noise, random, turbulence.
fabs (x)	Returns the absolute value of the floating-point number x.		See also: abs.
false ()	Always returns 0		See also: true.
floor (x)	Round x down to the nearest integer.	x	See also: ceil, trunc, rint.
fmod (x, y)	Computes the remainder of dividing x by y. The return value is $x-n y$, where n is the quotient of x / y, rounded towards zero to an integer.	x, y	See also: ceil, floor.
frame ()	Return the current frame number.		See also: x.
from_byte (color component)	Converts an sRGB pixel value to a linear value.	color_component	See also: to_sRGB, to_rec709f, from_rec709f.
from_rec70 9f (color component)	Converts a rec709 byte value to a linear brightness	color_component	See also: form_sRGB, to_rec709f.
from_sRG B (color component)	Converts an sRGB pixel value to a linear value.	color_component	See also: to_sRGB, to_rec709f, from_rec709f.
hypot (x, y)	Returns the $\operatorname{sqrt}\left(x^{*} x+y^{*} y\right)$. This is the length of the hypotenuse of a right-angle triangle with sides of length x and y .	x, y	See also: atan2.

$\left.\begin{array}{|l|l|l|}\hline \text { int (x) } & \begin{array}{l}\text { Round } \mathrm{x} \text { to the nearest } \\ \text { integer not larger in absolute } \\ \text { value. }\end{array} & \mathrm{x} \\ \hline \text { Idexp (x) } & \begin{array}{l}\text { Returns the result of } \\ \text { multiplying the floating-point } \\ \text { number } \mathrm{x} \text { by } 2 \text { raised to the } \\ \text { power exp. }\end{array} & \mathrm{x}, \text { exp } \\ \text { trunc, rint. }\end{array}\right\}$

pow2 (x)	Returns the value of x raised to the power of 2 .	x, y	See also: pow
radians (x)	convert the angle x from degrees into radians	x	See also: degrees
$\begin{aligned} & \text { random (x, } \\ & y, z) \end{aligned}$	creates a pseudo random value between 0 and 1 . It will always generate the same value for the same x, y and z. Calling random with no arguments will create a different value on every invocation.	optional x, optional y, optional z	See also: noise, fBm, turbulence
rint (x)	Round x to the nearest integer.	x	See also: ceil, floor, int, trunc
$\sin (x)$	Returns the sine of x	x in radians	See also: asin, cos, tan, sinh
$\sinh (x)$	Returns the hyperbolic sine of x, which is defined mathematically as $(\exp (x)$ $\exp (-x)) / 2$.	x	See also: sin, asin, cosh, tanh
smoothste p (a, b, x)	Returns 0 if x is less than a, returns 1 if x is greater or equal to b, returns a smooth cubic interpolation otherwise. Matches the smoothstep function in other shading languages.	a, b, x	See also: step, lerp
sqrt (x)	Returns the non-negative square root of x.	x	See also: pow, pow2
step (a, x)	Returns 0 if x is less than a , returns 1 otherwise. Matches the step function other shading languages.	a, x	See also: smoothstep, lerp
$\tan (\mathrm{x})$	Returns the tangent of x	x in radians	See also: atan, cos, sin, tanh, atan2
$\tanh (\mathrm{x})$	Returns the hyperbolic tangent of x, which is defined mathematically as $\sinh (x) /$ $\cosh (\mathrm{x})$.	x	See also: tan, atan, sinh, cosh
to_byte (color component)	Converts a floating point pixel value to an 8-bit value that represents that number in sRGB space.	color_component	See also: form_sRGB, to_rec709f, from_rec709f
to_rec709f (color component	Converts a floating point pixel value to an 8-bit value that represents that brightness in the rec709 standard when that standard is mapped to the 0-255 range.	color_component	See also: form_sRGB, from_rec709f

$\left.$| lo_sRGB
 (color
 component
 p | Converts a floating point
 pixel value to an 8-bit value
 in sRGB sesents that number | color_component |
| :--- | :--- | :--- | :--- |\quad| See also: form_sRGB, |
| :--- |
| to_rec709f, from_rec709f | \right\rvert\,

